The contribution of fetal metabolism to the disposition of morphine.

نویسندگان

  • Marianne Garland
  • Kirsten M Abildskov
  • Tung-Wah Kiu
  • Salha S Daniel
  • Raymond I Stark
چکیده

The contribution of fetal metabolism to drug disposition in pregnancy is poorly understood. With maternal administration of morphine, like many drugs, steady-state concentrations in fetal plasma are less than in maternal plasma. The contribution of fetal metabolism to this difference is unknown. Morphine was used as a model drug to test the hypothesis that fetal metabolism contributes significantly to drug clearance by the fetus. Infusions of morphine, morphine-3-beta-glucuronide (M3G), and morphine-6-beta-glucuronide (M6G) were administered to the fetal baboon. Plasma concentrations of drug and metabolite obtained near steady state were measured by high-performance liquid chromatography. During morphine infusion, morphine, M3G, and M6G concentrations rose linearly with dose. M3G concentrations exceeded M6G by 20-fold. Mean +/- S.D. clearances of morphine, M3G, and M6G from the fetus were 69 +/- 17, 2.3 +/- 0.60, and 1.6 +/- 0.24 ml x min(-1), respectively. Clearances seemed to be dose-independent. The mean +/- S.D. fraction of morphine dose metabolized was 32 +/- 5.5%. This converts to a fetal metabolic clearance of 22 +/- 6.5 ml x min(-1). In conclusion, one third of the elimination of morphine from the fetal baboon is attributable to metabolism, one third to passive placental transfer, and one third undefined. Furthermore, there is no evidence for saturation of metabolism. Fetal metabolism is surprisingly high compared with in vitro estimates of metabolism and morphine clearance in human infants. For morphine, fetal drug metabolism accounts for half the difference between fetal and maternal plasma concentrations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Placental transfer and fetal elimination of morphine-3-beta-glucuronide in the pregnant baboon.

The glucuronide metabolites of several widely used drugs are detected in fetal plasma after maternal drug administration. However, the disposition of these metabolites is poorly understood and clinical concerns have been raised about accumulation of active metabolites in the fetus. For this reason, morphine-3-beta-glucuronide (M3G), an active metabolite of morphine, was studied to provide quant...

متن کامل

Fetal morphine metabolism and clearance are constant during late gestation.

Fetal metabolism significantly contributes to the clearance of drugs from the fetus. To understand how the changes in fetal metabolism expected in late gestation alter fetal drug clearance, serial measurements of morphine metabolism were made in the fetal baboon over the latter third of gestation. Clearance and metabolism were evaluated in the context of fetal growth, onset of labor, and the ad...

متن کامل

Contribution of the Nucleus Cuneiformis to the Antinociceptive Effects of Systemic Morphine on Inflammatory Pain in Rats

Introduction: The role of midbrain reticular formation, which includes the nucleus cuneiformis (NCF), as a crucial antinociceptive region in descending pain modulation has long been investigated. In this study, we tried to highlight the role of NCF in morphine-induced antinociception in formalin-induced pain model in rats. Methods: A total of 201 male Wistar rats weighing 260-310 g were used in...

متن کامل

Imatinib metabolism and disposition in isolated rat perfused liver

Imatinib is an orally administered tyrosine kinase inhibitor which inhibits the Bcr-Abl protein-tyrosine kinase with high selectivity. Imatinib is rapidly absorbed from the gut, after oral intake and has an almost absolute bioavailability of 98%. The metabolism of imatinib is mediated by the cytochrome P450 (CYP) isoenzymes in the liver and gut wall. CGP74588 is a major active metabolite of ima...

متن کامل

P-27: The Effect of Oral Morphine Consumptionon Plasma Corticosteron Density and PlacentaDevelopment in Pregnant Wistar Rats

Background: Previous studies have shown that morphine consumption during pregnancy may delay embryo development or cause abnormal nervous system function .The most attention of research focuses on the embryo, whereas it was not attended to the placenta as an important organ which is affected by opioides. The present study focused on the effect of maternal morphine consumption on development of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Drug metabolism and disposition: the biological fate of chemicals

دوره 33 1  شماره 

صفحات  -

تاریخ انتشار 2005